InterviewSolution
Saved Bookmarks
| 1. |
सिद्ध कीजिए कि `tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=3tan^(-1)""(x)/(a)` |
|
Answer» माना `tan^(-1)""(x)/(a)=thetaimplies tan theta=(x)/(a)` `:.` दायाँ पक्ष `=3 tan^(-1)""(x)/(a)=3theta` अब, बायाँ पक्ष `tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]` =`tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=tan^(-1)[(3(x)/(a)-(x^(3))/(a^(3)))/(1-3(x^(2))/(a^(2)))]` `=tan^(-1)[(3 tan theta -tan^(3)theta)/(1-3tan^(2)theta)]` `=tan^(-1)[tan 3 theta ]=3 theta =3 tan^(-1)""(x)/(a)` `:. tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=3 tan^(-1)""(x)/(a)` |
|