1.

सिद्ध कीजिए कि `tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=3tan^(-1)""(x)/(a)`

Answer» माना `tan^(-1)""(x)/(a)=thetaimplies tan theta=(x)/(a)`
`:.` दायाँ पक्ष `=3 tan^(-1)""(x)/(a)=3theta`
अब, बायाँ पक्ष `tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]`
=`tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=tan^(-1)[(3(x)/(a)-(x^(3))/(a^(3)))/(1-3(x^(2))/(a^(2)))]`
`=tan^(-1)[(3 tan theta -tan^(3)theta)/(1-3tan^(2)theta)]`
`=tan^(-1)[tan 3 theta ]=3 theta =3 tan^(-1)""(x)/(a)`
`:. tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=3 tan^(-1)""(x)/(a)`


Discussion

No Comment Found