1.

सिद्ध कीजिए कि ` tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2)cos^(-1)x^(2)`

Answer» हमें सिद्ध करना है कि `
tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2)cos^(-1)x^(2)`
माना `(1)/(2) cos^(-1)x^(2)=thetaimplies x^(2)=cos2 theta`
`:. sqrt(1+x^(2))=sqrt(1+cos2 theta)`
`=sqrt(2cos^(2)theta)=sqrt(2)cos theta`
तथा ` sqrt(10-x^(2))=sqrt(1-cos2 theta)=sqrt(2 sin^(2)theta)=sqrt(2)sin theta `
अब , `(sqrt(1+x^(2))+sqrt(1+x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))=(sqrt(2)cos theta+sqrt(2)sin theta )/(sqrt(2) cos theta -sqrt(2)sin theta)`
`=( cos theta + sin theta )/( cos theta - sin theta )=(1+ tan theta )/(1- tan theta )=(tan""(pi)/(4)+tan theta )/(1-tan""(pi)/(4)tan theta )`
`(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))=tan((pi)/(4)+theta)`
`implies tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=tan""(pi)/(4)+theta`
`implies tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=tan""(pi)/(4)+(1)/(2)cos^(-1)x^(2)`


Discussion

No Comment Found