InterviewSolution
Saved Bookmarks
| 1. |
Simplify : `(x + sqrt(x^(2) - 1))/(x - sqrt(x^(2) -1)) + (x - sqrt(x^(2) -1))/(x + sqrt(x^(2) -1))` If the result of the simplification is equal to 14, then find the value of x |
|
Answer» `(x + sqrt(x^(2) -1))/(x - sqrt(x^(2) -1)) + (x - sqrt(x^(2) - 1))/(x + sqrt(x^(2) -1))` `= ((x + sqrt(x^(2) + 1))^(2) + (x - sqrt(x^(2) -1))^(2))/((x - sqrt(x^(2) -1)) (x + sqrt(x^(2) -1)))` `= (x^(2) + 2x sqrt(x^(2) -1) + x^(2) - 1 + x^(2) - 2x sqrt(x^(2) -1) + x^(2) -1)/((x)^(2) - (sqrt(x^(2) -1))^(2))` `= (2 (2x^(2) -1))/(x^(2) - x^(2) + 1) = 2 (2x^(2) -1) = 4x^(2) -2` As per question, `4x^(2) -2 = 14 or, 4x^(2) = 16 or, x^(2) = 4` `:. x = +- 2` Hence the given expression `= 4x^(2) -2 and x = +- 2` |
|