InterviewSolution
Saved Bookmarks
| 1. |
Solution of the differential equation `(1+x^(2)) dy + 2xy dx = cot x dx ` isA. ` y = log |sin x | (1+x^(2))+C(1+x^(2))^(-1)`B. ` y = log |sin x|(1+x^(2))^(-1)+C(1+x^(2))`C. ` y = log |sin x | (1+x^(2))+C(1+x)`D. ` y = log |sin x| (1+x^(2))^(-1)` |
|
Answer» Correct Answer - c Given , `(1+x^(2))dy +2xy dx = cot x dx ` ` rArr (1+x^(2)) dy = dx (cot x - 2xy ) ` ` rArr (dy)/(dx) = (cot x - 2xy)/(1+x^(2))` ` rArr (dy)/(dx) +(2xy)/(1+x^(2))= (cot x)/(1+x^(2))` Or comparing with the form `(dy)/(dx) +Py = Q` we get ` :. P = (2x)/(1+x^(2))and Q = (cot x)/(1+x^(2))` ` :. IF = e^(int Pdx) = e^(int (2x)/(1+x^(2) dx)) = e^(log(1+ x^(2))= 1+x^(2)` The General solution of the given differential equation given by `y * IF int Q xx IF dx +C` ` rArr (1+x)^(2) y = int( (1+x^(2))(cotx)/((1+x^(2)))) dx +C` ` rArr (1+x^(2)) y = log |sin x| +C` ` rArr y = log | sin x | (1+x^(2))^(-1)+C (1+x^(2))^(-1)` |
|