1.

Solve: `(1)/(|x|-3)le(1)/(2),x in R`

Answer» Correct Answer - `*(-oo,-5]uu(-3,3)uu[5,oo)`
Case I When `x ge 0`
Then, `|x|=x`
`therefore (1)/(|x|-3)le(1)/(2)rArr(1)/(x-3)-(1)/(2)le0rArr(2-x+3)/(2(x-3))le0rArr(5-x)/(x-3)le0`.
`therefore (5-xle0 and x-3gt0) or(5-x ge0 and x-3lt0)`
`rArr (xge5 and x gt3) or(x le5 and x lt3)`
`rArr(xge5) or (xlt3)`
`rArr (0lex lt3) or(xge5)`
`rArr x in [0,3) uu[5,oo)" "[therefore x ge 0]`
Case II When `x lt 0`.
Then, `|x| = -x`
`therefore(1)/(|x|-3)le(1)/(2) rArr(1)/(x-3)le(1)/(2)rArr(-1)/(x+3)le(1)/(2)rArr (1)/(2)+(1)/(x+3)le0`
`rArr (x+3+2)/(x+3)ge0 rArr (x+5)/(X+3)ge0`
`therefore (x+5 ge0and x+3gt0) or(x+5le0 and x+3 lt0)`
`rArr(xgt-5 and xgt-3) or (xle-5 and x lt-3)`
`rArr (xgt-3) or (xle-5)`. Bu `xlt0`.
`therefore(-3ltxlt0)or(xle-5)rArr x in(-3,0)uu(-oo,-5]`.
Hence, ` x in(-oo,-5]uu(-3,0)uu[0,3)uu[5,oo)`
`x in(-oo,-5] uu(-3,3)uu[5,oo)`.


Discussion

No Comment Found