1.

Solve each of the following system of inequations in R 11 – 5x > –4, 4x + 13 ≤ –11

Answer»

Given,

11 – 5x > –4 and 4x + 13 ≤ –11 

Let us consider the first inequality. 

11 – 5x > –4 

⇒ 11 – 5x – 11 > –4 – 11 

⇒ –5x > –15

⇒ \(\frac{-5x}{5}\) > \(\frac{-15}{5}\)

⇒ –x > –3 

⇒ x < 3 

∴ x ∈ (–∞, 3) ...(1) 

Now,

Let us consider the second inequality. 

4x + 13 ≤ –11 

⇒ 4x + 13 – 13 ≤ –11 – 13 

⇒ 4x ≤ –24

⇒ \(\frac{4x}{4}\) ≤ \(\frac{-24}{4}\)

⇒ x ≤ –6 

∴ x ∈ (–∞, –6] ....(2) 

From (1) and (2), we get 

x ∈ (–∞, 3) ∩ (–∞, –6] 

∴ x ∈ (–∞, –6] 

Thus,

The solution of the given system of inequations is (–∞, –6].



Discussion

No Comment Found