InterviewSolution
Saved Bookmarks
| 1. |
Solve for x and y : `2^(y-x) (x + y) = 1` and `(x + y)^(x - y) = 2`. |
|
Answer» We have, `2^(y-x) (x + y) = 1 implies x + y = (1)/(2^(y-x))` implies `x + y = 2^(x-y) " ...(1) and " (x + y)^(x-y) = 2 " "....(2)` `implies (2^(x-y))^(x-y) = 2` ` implies 2^((x-y)^(2)) = 2^(1)` `implies x - y = pm 1` `{:("If x -y = 1 then x + y = 2"),("Solving these two, we get"),(x = (3)/(2). y = (1)/(2)):}:|{:("If x - y = - 1 then (x + y)"^(-1)=2),("So, x - y = - 1"),("and x + y ="(1)/(2)),("Solving these two, we get "),(x = - (1)/(4). y = (3)/(4)):}` `therefore` `{:(x = (3)/(2)),(y = (1)/(2)):}}` or `{:(x = - (1)/(4)),(y = (3)/(4)):}}` |
|