Saved Bookmarks
| 1. |
Solve for x:\(cos(2sin^{-1}x)=\frac{1}{9}\) |
|
Answer» To find: value of x Formula Used: \(2sin^{-1}x=sin^{-1}(2x\sqrt{1-x^2})\) Given: \(cos(2sin^{-1}x)=\frac{1}{9}\) LHS = cos(2sin-1 x) Let θ = sin-1 x So, x = sin θ … (1) LHS = cos(2θ) = 1 – 2sin2θ Substituting in the given equation, \(1-2sin^2\theta=\frac{1}{9}\) \(2sin^2\theta=\frac{8}{9}\) \(sin^2\theta=\frac{4}{9}\) Substituting in (1), \(x^2=\frac{4}{9}\) \(x=\pm\frac{2}{3}\) Therefore,\(x=\pm\frac{2}{3}\) are the required values of x. |
|