1.

Solve for x:\(cos(2sin^{-1}x)=\frac{1}{9}\)

Answer»

To find: value of x 

Formula Used: \(2sin^{-1}x=sin^{-1}(2x\sqrt{1-x^2})\)

Given: \(cos(2sin^{-1}x)=\frac{1}{9}\)

LHS = cos(2sin-1 x) 

Let θ = sin-1

So, x = sin θ … (1) 

LHS = cos(2θ) 

= 1 – 2sin2θ 

Substituting in the given equation,

\(1-2sin^2\theta=\frac{1}{9}\)

\(2sin^2\theta=\frac{8}{9}\)

\(sin^2\theta=\frac{4}{9}\)

Substituting in (1),

\(x^2=\frac{4}{9}\)

\(x=\pm\frac{2}{3}\)

Therefore,\(x=\pm\frac{2}{3}\) are the required values of x.



Discussion

No Comment Found