1.

Solve the differential equation ` x (dy )/(dx) - y = 2 x^(3), x gt 0`

Answer» The given differential equation may be written as
` (dy)/(dx) + (( - 1 )/( x )) y = 2x ^(2)" " ` ... (i)
This is of the form, ` (dy)/(dx) + Py = Q`, where `P = (-1)/(x) and Q = 2x ^(2)`
Thus, the given diffential equation is linear.
IF ` = e ^( int Pdx) = e ^( int - (1)/(x) dx ) = e ^(-log x ) = e ^( log ((1)/(x))) = (1)/(x)`
So, the required solution is given by
` y xx IF = int {Q xx IF} dx + C` , where C is an arbitrary constant,
i.e, ` y xx (1)/(x) = int ( 2x ^(2) xx (1)/(x)) dx + C = 2 int x dx + C = x ^(2) + C `
`rArr y = x ^(3) + Cx `
Hence, the required solution is `y = x ^(3) + Cx`


Discussion

No Comment Found