1.

Solve the equation `x^(2)-(sqrt(3)+1)x+sqrt(3)=0` by the method of completing the square.

Answer» We have
`x^(2)-(sqrt(3)+1)x+sqrt(3)=0`
`implies" "x^(2)-(sqrt(3)+1)x=-sqrt(3)`
`implies" "x^(2)-2xx x xx((sqrt(3)+1)/(2))+((sqrt(3)+1)/(2))^(2)=-sqrt(3)+((sqrt(3)+1)/(2))^(2)`
`" ""[""adding "((sqrt(3)+1)/(2))^(2)" on both sides""]"`
`implies" "{x-((sqrt(3)+1))/(2)}^(2)={((sqrt(3)+1)^(2))/(4)-sqrt(3)}`
`implies" "("("sqrt(3)+1")"^(2)-4sqrt(3))/(4)=((sqrt(3)-1)/(2))^(2)`
`implies" "{x-("("sqrt(3)+1")")/(2)}=+-("("sqrt(3)-1")")/(2)" "["taking square root on both sides"]`
`implies" "x-("("sqrt(3)+1")")/(2)=("("sqrt(3)-1")")/(2)" or "x-("("sqrt(3)+1")")/(2)=(-"("sqrt(3)-1")")/(2)`
`implies" "x=("("sqrt(3)-1")")/(2)+("("sqrt(3)+1")")/(2)=(2sqrt(3))/(2)=sqrt(3)`
or `x=("("-sqrt(3)+1)/(2)+("("sqrt(3)+1")")/(2)=(2)/(2)=1`
`implies" "x=sqrt(3)" or "x=1.`
Hence, `sqrt(3)` and 1 are the roots of the given equation.


Discussion

No Comment Found