1.

Solve the following quadratic equations:\(x^2 -(\sqrt{2}+i)x + \sqrt{2}i = 0\)

Answer»

 \(x^2 -(\sqrt{2}+i)x + \sqrt{2}i = 0\)

Given \(x^2 -(\sqrt{2}+i)x + \sqrt{2}i = 0\)

⇒ \(x^2 -(\sqrt{2}x+ix) + \sqrt{2}i = 0\)

⇒ \(x^2 -\sqrt{2}x-ix + \sqrt{2}i = 0\) 

⇒ \(x(x-\sqrt{2})-i(x-\sqrt{2})=0\)

\((x-\sqrt{2})(x-i)=0\) 

⇒  \(x-\sqrt{2}=0\,or\, x=i=0\)

∴ x = \(\sqrt{2}\,or\,i\)

Thus, the roots of the given equation are \(\sqrt{2}\) and i.



Discussion

No Comment Found