InterviewSolution
Saved Bookmarks
| 1. |
Solve the following quations by using qardratic formula: `abx^(2)+(b^(2)-ac)x-bc=0` |
|
Answer» The given equation is `abx^(2)+(b^(2)-ac)x-bc=0.` This is of the form `Ax^(2)+Bx+C=0,` where `A=ab,B=(b^(2)-ac)" and "C=-bc.` `:." "D=(B^(2)-4AC)=(b^(2)-ac)^(2)+4ab^(2)c` `=b^(4)+a^(2)c^(2)-2ab^(2)c+4ab^(2)c` `=b^(4)+a^(2)c^(2)+2ab^(2)c=(b^(2)+ac)^(2)gt0..` So, the given equation has real roots. Now, `sqrt(D)=(b^(2)+ac).` `:." "alpha=(-B+sqrt(D))/(2A)=(-(b^(2)-ac)+(b^(2)+ac))/(2ab)=(2ac)/(2ab)=(c)/(b),` `" "beta=(-B-sqrt(D))/(2A)=(-(b^(2)-ac)+(b^(2)+ac))/(2ab)=(-2b^(2))/(2ab)=(-b)/(a).` Hence,`(c)/(b)` and `(-b)/(a)` are the roots of the given equation. |
|