InterviewSolution
Saved Bookmarks
| 1. |
Solve: `x^2-(7-i)x+(18-i)=0ov e rCdot` |
|
Answer» `x^2 - (7-i)x - (18-i) = 0` This is a quadratic equation and its roots can be given as, `x = (-b+-sqrt(b^2-4ac))/(2a)` Here, `a = 1, b = -(7-i), c= (18-i)` Now, `b^2-4ac = (-(7-i))^2 - 4(18-i)` `= 49+i^2 - 14i -72+4i`...[As `i^2 = -1`] `= 49-1 - 14i -72+4i` `=-24-10i` `=1 - 25 - 2(1)(5i)` `=1 + 25i^2 - 2(1)(5i)` `= 1^2 + (5i)^2 - 2(1)(5i)` `=(1-5i)^2` `:. sqrt(b^2-4ac) = 1-5i` `:. x = (7-i+-(1-5i))/2` `=>x = (8-6i)/2 and x = (6-4i)/2` `=> x = 4-3i and x = 3-2i`, which are the required solutions for the given equation. |
|