1.

Solve ` (x log x ) ( dy)/(dx) + y = (2)/(x) log x `.

Answer» The given differential equation may be written as
` (dy)/(dx) + (1)/( (x logx )) * y = ( 2)/(x^(2)) `.
This is of the form ` (dy)/(dx) + Py =Q, ` where `P = (1)/((x log x )) and Q = (2)/(x ^(2)) `
Thus, the given differential equation is linear.
` IF = e ^(int Pdx) = e ^( int (1)/(x log x) dx ) = e ^( int (1)/(t) dt)`, where ` log x = t `
`" " = e ^( log t) = t = log x `
So, the solution of the given differential equation is
` y xx IF = int {Q xx (IF)}dx + C`,
i.e., `y (log x ) = int(( 2)/( x^(2)) log x )dx +C `
`" " = 2 int ( log x ) * (1)/(x ^(2)) dx+ C `
`" " = 2 [ (logx ) (- (1)/(x)) - int (1)/(x) * (- (1)/(x)) dx ] + C`.
`" " ` [ integrating by parts]
`" " = ( - 2log x ) /(x) - (2)/(x) + C`
Hence, `y (log x ) = (-2)/(x) (log x + 1 ) +C ` is the required solution.


Discussion

No Comment Found