InterviewSolution
Saved Bookmarks
| 1. |
Solved the equation by using quadratic formula `a(x^(2)+1)=(a^(2)+1)x,ane0`. |
|
Answer» Given equation is `a(x^(2)+1)=(a^(2)+1)x` `impliesax^(2)+a=a^(2)x+x` `impliesax^(2)-x(a^(2)+1)+a=0` Comparing with `Ax^(2)+Bx+C=0`, we get `A=a,B=-(a^(2)+1)andC=a` `:.x=(-B+-sqrt(B^(2)-4AC))/(2A)` `impliesx=(-[-(a^(2)+1)]+-sqrt({-(a^(2)+1)}^(2)-4xxaxxa))/(2a)` `impliesx=((a^(2)+1)+-sqrt(a^(4)+1+2a^(2)-4a^(2)))/(2a)` `impliesx=((a^(2)+1)+-sqrt((a^(2)-1))^(2))/(2a)` `impliesx=((a^(2)+1)+-(a^(2)-1))/(2a)` `impliesx=(a^(2)+1+a^(2)-1)/(2a)and(a^(2)+1-a^(2)+1)/(2a)` `impliesx=(2a^(2))/(2a)and(2)/(2a)` `impliesx=aand(1)/(a)` are roots of the equation. |
|