1.

सरलतम रूप में लिखिए - `tan^(-1).(sqrt(1+x^(2))-1)/(x), x ne 0`

Answer» माना `x=tan theta, " तब "theta=tan^(-1)x, theta in (-(pi)/(2),(pi)/(2))`
`therefore" "tan^(-1).(sqrt(1+x^(2))-1)/(x)`
`=tan^(-1)[(sqrt(1+tan^(2)theta)-1)/(tan^(2)theta)]`
`=tan^(-1)[(sectheta-1)/(tan theta)]," "[because sec theta gt 0, (-(pi)/(2),(pi)/(2))"में "]`
`=tan^(-1)[(1-cos theta)/(sin theta)]`
`=tan^(-1)[(1-(1-sin^(2).(theta)/(2)))/(2sin.(theta)/(2).cos.(theta)/(2))]`
`=tan^(-1)((sin.(theta)/(2))/(cos.(theta)/(2)))`
`=tan^(-1)(tan.(theta)/(2))`
`[because -(pi)/(2)lt theta lt (pi)/(2) rArr -(pi)/(4)lt(theta)/(2)lt(pi)/(4)]`
`=(theta)/(2)=(1)/(2)tan^(-1)x`जो कि अभीष्ट सरलतम रूप है।


Discussion

No Comment Found