1.

State and prove perpendicular axis theorem.

Answer»

Solution :Perpendicularaxistheorem : theperpendicularaxistheoremholdsgoodforplanelaminarstartsthattheis equalto thesumof momentsof inertia about twoperpendicularaxeslyingin theplaneof thebodysuch thatall thethreeaxesmutuallyperpendicularand havea commonpoint
Let theX and Y- axesliein the planeandZ-axisperpendicularto theplaneof thelaminarobject . ifthe momentsof inertiaof thebodyaboutX and Y-axesare ` I_(X) andI_Y`respendicularand havea common POINT.
Let theX ANDY axesliein theplaneand Z - axis,thenthe perpendicularaxistheoremcouldbe expressedas ,
`I_(Z)= I_(X )+I_(Y)`
to provethistheorem. let usconsidera planelaminer objectof negligiblethicknesson whichliesthe origin(O ).The Xand Y- axes lieon theplaneand Z-AXISIS perpendicularto itas shownin figure.Thelamina isconsidered tothemadeup ofa largenumberofparticlesof massm . Letuschooseone suchpartivle at apointP whichhascoordinates(x, y)at adistancer from O .

Themomentof inertiaof theparticleaboutZ- axisis `mr^2 `
thesummationof hteaboveexpressiongivesthe momentofinertiaof thelaminaaboutZ- axisas , `L_(Z)= summr^2`
Here,`r^2=x^2+y^2`
then ` I_(z)= summ(x^2+y^2)`
` I_(Z)= summx^2+ summy^2`
in theaboveexpression , theterm` sum mx^2` is the moment ofinertiaof thebodyabouttheY -axisand similary the term` summy^2` is themomentof inertiaaboutX - axisthus
` I_(X) = summy^2and I_(Y)= sum mx^2`
Substitutingin theequationof `I_Z`gives
` I_(Z )= I_(X ) +I_(Y)`
Thusthe perpendicularaxistheoremis proved .


Discussion

No Comment Found