1.

Statement 1: If `log(1-x+x^(2))=a_(1)x+a_(2)x^(32)+a_(3)x^(3)+..` then `a_(3)+a_(6)+a_(9)+..=2/3log_(e)2` Statement 2: `1-1/2+1/3-11/4+1/5-1/6+..=log_(e)2`A. 1B. 2C. 3D. 4

Answer» Answer:
We have
`log(1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3)+...`
`rarr log(1-x+x^(2))=x(a_(1)+a_(4)x^(3)+a_(7)x^(6)+..)`
`+x^(2)(a_(2)+a_(5)x^(3)+..)+(a_(3)x^(3)+a_(6)x^(6)+…)`
Replacing x by 1 w and `w^(2)` respectively we get
`0=e_(1)+E_(2)+E_(3)`
`log(-2w)=wE_(1)+w^(2)E_(2)+E_(3)`
`log(-2w^(2))=w^(2)E_(1)+wE_(2)+E_(3)`
When `E_(1)=a_(1)+a_(4)+a_(7)++...`
`E_(2)=a_(2)+a_(5)+..`
`E_(3)=A_(3)+a_(6)+..`
Adding i,ii and iii we get
`log4=3 E_(3)rarrE_(3)=2/3log_(e)2`
Clearly statement 2 is also true


Discussion

No Comment Found