1.

Suppose displacement `y(t)` (that is, y as a function of t ) is given by `y(t)=t^(3)`

Answer» Find velocity `(dy//dt)` at `t = 3 sec`.
Displacement at `t+Deltat` is
`y(t+Deltat)=(t+Deltat)^(3)`
`=(t^(3)+3t^(2)Deltat+3t Deltat^(2)+Deltat^(3))`
hence displacement from t to `t+Deltat` is `Deltay`
`Deltay=y(t+Deltat)-y(t)=(3t^(2)Deltat+3tDeltat^(2)+Deltat^(3))`
Substituting this into Equation (i) gives
`(dy)/(dt)=underset(Deltararr0)(lim)(Deltay)/(Deltat)=underset(Deltatrarr0)(lim)[3t^(2)+3tDeltat+Deltat^(2)]`
Here we can see that if we take very small value of `Deltat` then value of `dy//dt` will approach `3t^(2)` as all other terms will become negligible and impossible to measure by any instrument available in this world.
hence, `" " (dy)/(dt)=3t^(2) rArr (dy)/(dt)=v(at " " t =3sec)=3(3)^(2)=27 m//s`


Discussion

No Comment Found

Related InterviewSolutions