1.

The base of a right pyramid is an equilateral triangle each side of which is 4 m long. Every slant edge is 5 m long. Find the lateral surface area and volume of the pyramid?

Answer»

Let ‘h’ be the height of the pyramid and ‘a’ the length of each side of the base of an equilateral triangle.

Then, slant edge = \(\sqrt{h^2+\frac{a^2}{3}}\) 

⇒ 5 = \(\sqrt{h^2+\frac{16}{3}}\) ⇒ 25 - \(\frac{16}{3}\) =h2 ⇒ h2\(\frac{59}{3}\) ⇒ h = \(\sqrt{\frac{59}{3}}\) m

Slant height = \(\sqrt{h^2+\frac{a^2}{12}}\)  = \(\sqrt{\frac{59}{3}+\frac{16}{12}}\)  =  \(\sqrt{21}\) m

∴ Lateral surface area = \(\frac{1}{2}\)(Perimeter of base × Slant height) = \(\frac{1}{2}\)(4+ 4+ 4)× \( \sqrt{21}\) m2  

\(6 \sqrt{21} \) m2  

Volume of the pyramid =   \(\frac{1}{3}\)(Area of base × height)  = \(\frac{1}{3} \times \frac{\sqrt{3}}{4} \times 4^2 \times \sqrt{\frac{59}{3}}\) m3

\(\frac{4\sqrt{59}}{3}\) m3



Discussion

No Comment Found