1.

The base of a triangle is 4 cm longer than its altitude. If the area of the triangle is 48 sq.cm, then find its base and altitude.

Answer»

Let the altitude of the triangle h = x cm 

Then its base ‘b’ = x + 4. 

Area = 1/2 × base × height

= 1/2 (x + 4)(x) 

\(\frac{x^2+4x}{2}\)

By problem \(\frac{x^2+4x}{2}\) = 48 

⇒ x2 + 4x = 2 × 48 

⇒ x2 + 4x – 96 = 0 

⇒ x2 + 12x – 8x – 96 = 0 

⇒ x(x + 12) – 8(x + 12) = 0 

⇒ (x + 12)(x – 8) = 0 

⇒ x + 12 = 0 (or) x – 8 = 0 

⇒ x = -12 (or) x = 8 

But x can’t be negative. 

∴ x = 8 and x + 4 = 8 + 4 = 12 

Hence altitude = 8 cm and base = 12 cm.



Discussion

No Comment Found