1.

The coefficient of `x^(4)` in the expansion of `(1-ax-x^(2))/(e^(x))` isA. `(-1)r/(r!){-r^(2)+r(a+1)+1}`B. `(-1)r/(r!){-r^(2)-r(a+1)+1}`C. `(-1)r/(r!){-r^(2)-r(a+1)+1}`D. none of these

Answer» Answer:
We have
`(1-ax-x^(2))/(e^(x))=e^(-x)-axe^(x)-x^(2)e^(-x)`
`therefore` coefficient of `x^(r ) in (1-ax-x^(2))/(e^(x))`
=coefficient of `x^(r ) in e^(-x)-axe^(-x)-x^(2)e^(-x)`
=coefficient of `x^(r ) "in" e^(-x)-a xx "coefficient" of x^(r-1) "in" e^(-x)-"coefficient of" x^(r-2) "in" e^(x)`
`=(-1)^(r)/(r!)-a(-1)^(r-1)/(r-1)!-(-1)^(r-2)/(r-2)!`
`=(-1)^(r)/(r!){1+ar-r(r-1)}`


Discussion

No Comment Found