1.

The coefficient of `x^(n)` in the expansion of `e^(a+bx)` in power of x isA. `(b^(n))/(n!)`B. `e^(a)(b^(n+1))/(n+1)!`C. `e^(a)(b^(n))/(n!)`D. none of these

Answer» Answer:
We have
`e^(a+bx)=e^(a).e^(bx)=e^(a){underset(n=0)overset(infty)Sigma(bx)^(n)/(n!)}`
`rarr e^(a+bx)=e^(a){1+(bx)/(1!)+(bx)^(2)/(2!)+(bx)^(3)/(n!)+….}`
`therefore` coefficient of `x^(n) in e^(a+bx)=e^(a)(b^(n))/(n!)`


Discussion

No Comment Found