1.

The cost function of a firm is C = x3 – 12x2 + 48x. Find the level of output (x > 0) at which average cost is minimum.

Answer»

The cost function is C = x3 – 12x2 + 48x 

Average cost is minimum, 

When Average Cost (AC) = Marginal Cost (MC) 

Cost function, C = x3 – 12x2 + 48x

Average Cost, AC = \(\frac{x^3-12x^2+48x}{x}\) = x2 – 12x + 48

Marginal Cost (MC) = \(\frac{dC}{dx}\)

= \(\frac{d}{dx}\)(x3 – 12x2 + 48x) 

= 3x2 – 24x + 48 

But AC = MC 

x2 – 12x + 48 = 3x2 – 24x + 48 

x2 – 3x2 – 12x + 24x = 0 

-2x2 + 12x = 0 

Divide by -2 we get, x2 – 6x = 0

x(x – 6) = 0 

x = 0 (or) x – 6 = 0 

x = 0 (or) x = 6 

But x > 0 

∴ x = 6 

Output = 6 units



Discussion

No Comment Found