1.

The domain of definition of the function `f(x) = sqrt(log_(x^(2)-1)) x` isA. `( sqrt2, oo)`B. `(0, oo)`C. `(1, oo)`D. none of these

Answer» Correct Answer - A
We have,
`f(x) = sqrt(log_((x^(2)-1))x)`
Clearly,f(x) is define,if
`log_((x^(2)-1)) x ge 0, x ge 0 ,x^(2)ge -1 ge 0 and x^(2) - 1 ne1`
Now,
`log_((x^(2)-1)) x gt 0`
`rArr {{:(,x gt 1, "if" x^(2) - 1 gt 1),(,0 lt x lt 1, "if" x^(2) - 1 lt 1):}`
`rArr {{:(,x ge1, "if" x^(2) - 2 lt 0 ),(,0 lt x lt 1,"if" x^(2)-2 lt 0 ):}`
`rArr { {:(, x ge 1,"if" x lt - sqrt(2) or "," xgt sqrt(2)),(,0lt x lt 1 , "if"-sqrt(2) lt x ltsqrt(2)):}`
`rArr x gt sqrt(2) or , 0 lt x lt 1`
`rArr x in (0,1) uu (sqrt(2) , ooo)`
And ,
`x gt 0, x^(2) -1 gt 0 and x^(2) - 1 ne 1`
`rArr x in (1,sqrt(2))`
From (i) and (ii), we get `x in (sqrt(2),oo)`
Hence, domain of `f(x)` is `(sqrt(2),oo)` .


Discussion

No Comment Found

Related InterviewSolutions