

InterviewSolution
Saved Bookmarks
1. |
The energy (E), angular momentum (L) and universal gravitational constant (G) are chosen as fundamental quantities. The dimensions of universal gravitational constant in the dimensional formula of Planck's constant h is |
Answer» <html><body><p>zero<br/>`-1`<br/>`5//3`<br/>`1`<br/></p>Solution :(a) `hprop G^(<a href="https://interviewquestions.tuteehub.com/tag/x-746616" style="font-weight:bold;" target="_blank" title="Click to know more about X">X</a>)<a href="https://interviewquestions.tuteehub.com/tag/l-535906" style="font-weight:bold;" target="_blank" title="Click to know more about L">L</a>^(y)E^(z)`<br/> <a href="https://interviewquestions.tuteehub.com/tag/write-746491" style="font-weight:bold;" target="_blank" title="Click to know more about WRITE">WRITE</a> the dimensions on both sides <br/> `[<a href="https://interviewquestions.tuteehub.com/tag/ml-548251" style="font-weight:bold;" target="_blank" title="Click to know more about ML">ML</a>^(2)T^(-1)]prop[M^(-1)L^(3)T^(-2)]^(x)[ML^(2)T^(-1)]^(y)[ML^(2)T^(-2)]^(z)` <br/> `[ML^(2)T^(-1)]=k[M^(-1)L^(3)T^(-2)]^(x)[ML^(2)T^(-1)]^(y)[ML^(2)T^(-2)]^(z)` <br/> Comparing the powers, we get <br/> `1=-x+y+z`...........(i) <br/> `2=3x+2y+2z` .........(ii) <br/> `-1=-2x=y-2z`...........(iii) <br/> On solving eqs (i), (ii) and (iii) we <a href="https://interviewquestions.tuteehub.com/tag/ger-468132" style="font-weight:bold;" target="_blank" title="Click to know more about GER">GER</a> <br/> `x=0`</body></html> | |