1.

The energy (E), angular momentum (L) and universal gravitational constant (G) are chosen as fundamental quantities. The dimensions of universal gravitational constant in the dimensional formula of Planck's constant h is

Answer»

zero
`-1`
`5//3`
`1`

Solution :(a) `hprop G^(X)L^(y)E^(z)`
WRITE the dimensions on both sides
`[ML^(2)T^(-1)]prop[M^(-1)L^(3)T^(-2)]^(x)[ML^(2)T^(-1)]^(y)[ML^(2)T^(-2)]^(z)`
`[ML^(2)T^(-1)]=k[M^(-1)L^(3)T^(-2)]^(x)[ML^(2)T^(-1)]^(y)[ML^(2)T^(-2)]^(z)`
Comparing the powers, we get
`1=-x+y+z`...........(i)
`2=3x+2y+2z` .........(ii)
`-1=-2x=y-2z`...........(iii)
On solving eqs (i), (ii) and (iii) we GER
`x=0`


Discussion

No Comment Found