1.

The equation esin x  – e–sin x  – 4 = 0 has(a) no real roots (b) exactly one real root (c) exactly four real roots (d) infinite number of real roots.

Answer»

(a) no real roots

Given, esin x – e–sin x – 4 = 0 

Let esin x = y. Then, the given equation becomes 

y – \(\frac{1}{4}\) = 4 ⇒ y2 – 4 –1 = 0

⇒ y = \(\frac{4±\sqrt{16+4}}{2}\) = 2 ± √5

⇒ esin x = 2 ± √5 ⇒ sin x = log(2 ± √5)

⇒ sin x = loge (2 + √5)

(∴ (2 - √5) 0 < and so loge (2 + √5) − is not defined)

Now (2 + √5) > 4 ⇒ loge (2 - √5) > 1 

 But the value of sin x lies between –1 and 1, both values inclusive, so sin \(x\) ≠ loge (2 + √5)

∴ There are no possible real roots of the given equation.



Discussion

No Comment Found