1.

The equation of motion of a particle is x= a cos (alpha t)^(2). The motion is………..

Answer» <html><body><p><a href="https://interviewquestions.tuteehub.com/tag/periodic-598580" style="font-weight:bold;" target="_blank" title="Click to know more about PERIODIC">PERIODIC</a> but not <a href="https://interviewquestions.tuteehub.com/tag/oscillatory-2208020" style="font-weight:bold;" target="_blank" title="Click to know more about OSCILLATORY">OSCILLATORY</a><br/>periodic and oscillatory<br/>oscillatory but not periodic<br/>neither periodic nor oscillatory</p>Solution :The equation of motion of a particle is `<a href="https://interviewquestions.tuteehub.com/tag/x-746616" style="font-weight:bold;" target="_blank" title="Click to know more about X">X</a>= a <a href="https://interviewquestions.tuteehub.com/tag/cos-935872" style="font-weight:bold;" target="_blank" title="Click to know more about COS">COS</a> (alpha t)^(2)` is a cosine function hence, motion is oscillatory. <br/> Now putting `t+T` <a href="https://interviewquestions.tuteehub.com/tag/instead-516622" style="font-weight:bold;" target="_blank" title="Click to know more about INSTEAD">INSTEAD</a> of t, <br/> `x(t+T)= a cos [alpha (t+T)^(2)]""[therefore x(t) = a cos (alpha t)^(2)]` <br/> `=a cos [alpha t^(2) + alphaT^(2) +2 alpha t T] ne x(t)` <br/> where, T is a period of the function `omega (t)` <br/> Hence given motion is oscillatory but not periodic.</body></html>


Discussion

No Comment Found