InterviewSolution
Saved Bookmarks
| 1. |
The equation of one of the curves whose slope of tangent at any pointis equal to `y+2x`is`y=2(e^x+x-1)``y=2(e^x-x-1)``y=2(e^x-x+1)``y=2(e^x+x+1)`(5) `y=e^x-x-1`A. `y = 2(e^(x)+x-1)`B. `y=2(e^(x)-x-1)`C. `y = 2(e^(x)-x+1)`D. ` y = 2 (e^(x)+x+1)` |
|
Answer» Correct Answer - b Given , `(dy)/(dx) = y + 2x` ` rArr (dy)/(dx) -y = 2x` This is linear differential equation `:. IF = e^((int)-1//dx)= e^(-x)` ` :. ` Solution of the differential equation is ` y * e^(-x) int xe^(-x) dx=2 (-xe^(-x)-e^(-x))+C` [ integration by parts ] ` rArr y = 2e^(x) (-xe^(-x) - e^(-x)) +Ce^(x)` ` rArr y = -2 x - 2 + Ce^(x)` For C =2 we get ` y = 2 (e^(x) -x-1)` ` y = 2(e^(x) - x - 1)` |
|