InterviewSolution
Saved Bookmarks
| 1. |
The equation `(x-alpha)^2+(y-beta)^2=k(lx+my+n)^2` representsA. a parabola for `k lt(l^(2)+m^(2))^(-1)`B. an ellipse for `0 lt k lt(l^(2)+m^(2))^(-1)`C. a hyperbola for `k gt (l^(2)+m^(2))^(-1)`D. a point circle for k = 0 |
|
Answer» Correct Answer - B::C::D `(x-alpha)^(2)+(gamma-beta)^(2)=k(lx+my+n)^(2)` `"or "sqrt((x-alpha)^(2)+(y-beta)^(2))=sqrtksqrt(l^(2)+m^(2))((lx+my+n))/(sqrt(l^(2)+m^(2)))` `"or "(PS)/(PM)=sqrtksqrt(l^(2)+m^(2))` where P(x, y) is any point on the curve. Fixed `S(alpha, beta)` is focus and fixed line `lx+my+n=0` is directrix. If `k(l^(2)+m^(2))=1, P` lies on a parabola. If `k(l^(2)+m^(2))lt1`, P lies on an ellipse. If `k(l^(2)+m^(2))gt1`, P lies on a hyperbola. If k = 0, P lies on a point circle. |
|