1.

The equilibrium constant `(K_(p))` for the decomposition of gaseous `H_(2)O` `H_(2)O(g)hArr H_(2)(g)+(1)/(2)O_(2)(g)` is related to the degree of dissociation `alpha` at a total pressure P byA. `K_(p)=(alpha^(3)P^(1//2))/((1+alpha)(2+alpha)^(1//2))`B. `K_(p)=(alpha^(3)P^(3//2))/((1-alpha)(2+alpha)^(1//2))`C. `K_(p)=(alpha^(3//2)P^(2))/((1-alpha)(2+alpha)^(1//2))`D. `K_(p)=(alpha^(3//2)P^(1//2))/((1-alpha)(2+alpha)^(1//2))`

Answer» Correct Answer - D
Consider the equilibrium expression
`{:(,H_(2)O(g),hArrH_(2)(g)+,(1)/(2)O_(2)(g)),("Inital moles",1,0,0),("Equilibrium moles",1-alpha,alpha,alpha//2):}`
Total moles at equilibrium `=(1-alpha)+(alpha)+(alpha)/(2)`
`=1+alpha//2`
Note that is always convenient to consider 1 mol whenever we del with the degree of dissociation. At equilibrium, the partial pressure of gas can be calculated as follows:
Partial pressure = (Mole fraction) x (Total pressure)
`:. P_(H_(2)O)= (1-alpha)/(1+alpha//2)P`
`= (2(1-alpha))/(2+alpha)P`
`P_(H_(2))=(alpha)/(1+alpha//2)P=(2alpha)/(2+alpha)P`
`P_(O_(2))=(alpha//2)/(1+alpha//2)P=(alpha)/(2+alpha)P`
According to the law of chemical equilibrium,
`K_(p)=(P_(H_(2))P_(O_(2))^(1//2))/(P_(H_(2)O))`
`= (((2alpha)/(2+alpha)P)((alphaP)/(2+alpha))^(1//2))/((2(1-alpha))/(2+alpha)P)`
`=(alpha)/(1-alpha)((alphaP)/(2+alpha))^(1//2)`
`=(alpha^(3//2)P^(1//2))/((1-alpha)(2+alpha)^(1//2))`


Discussion

No Comment Found

Related InterviewSolutions