1.

The half-life of \(^{209}\)Po is 102 y. How much of 1 mg sample of polonium decays in 62 y?

Answer»

Given: t1/2 = 102y,

t = 62 y, 

N0 = 1 mg 

To find: Amount of polonium that decayed in 62 y

Formula: 

i. t1/2 = \(\frac{0.693}{\lambda}\)
ii.\(\lambda\) = \(\frac{2.303}t\) log10 \((\frac{N_0}N)\)

Calculation:  \(\lambda\) = \(\frac{0.693}{t_{1/2}}\) = \(\frac{0.693}{102y}\) = 6.794 x 10-3 y-1

\(\lambda\) = \(\frac{2.303}{t}\)  log10 \((\frac{N_0}N)\)

Hence,  log10 \((\frac{N_0}N)\) = \(\frac{\lambda t}{2.303}\)

\(\frac{6.794\times 10^{-3}y^{-1}\times 62\,y}{2.303}\) = 0.1829

Taking antilog of both sides we get, \(\frac{N_0}N\) = antilog (0.1829) = 1.524

N = \(\frac{N_0}{1.524}\) = \(\frac{1\,mg}{1.524}\) = 0.656 mg

N is the amount that remains after 62 y. Hence, the amount decayed in 62 y = 1 mg – 0.656 mg = 0.344 mg

The amount decayed in 62 y is 0.344 mg



Discussion

No Comment Found