1.

The integral `int(1+x-1/x)e^(x+1/x)dx` is equal toA. `(x-1)e^(x+(1)/(x))+c`B. `xe^(x+(1)/(x))+c`C. `(x+1)e^(x+(1)/(x))+c`D. `-xe^(x+(1)/(x))+c`

Answer» Correct Answer - B
`int(1+x-(1)/(x))e^(x+(1)/(x))dx`
`=int e^(x+(1)/(x))dx+int(1-(1)/(x^(2)))e^(x+(1)/(x))dx`
`=int e^(x+(1)/(x))dx + xe^(x+(1)/(x))-int(d)/(dx)(x)e^(x+(1)/(x))dx`
`=int e^(x+(1)/(x))dx + xe^(x+(1)/(x))-int e^(x+(1)/(x))dx" "[therefore int(1-(1)/(x^(2)))e^(x+(1)/(x))dx = e^(x+(1)/(x))]`
`=int e^(x+(1)/(x))dx + xe^(x+(1)/(x))-int ex^(x+(1)/(x))dx = xe^(x+(1)/(x))+c`


Discussion

No Comment Found

Related InterviewSolutions