

InterviewSolution
Saved Bookmarks
1. |
The integral `int(2x^(3)-1)/(x^(4)+x)dx` is equal to (here C is a constant of intergration)A. `(1)/(2)"log"_(e)(|x^(3)+1|)/(x^(2))+C`B. `(1)/(2)"log"_(e)(|x^(3)+1|^(2))/(|x^(3)|)+C`C. `"log"_(e)|(x^(3)+1)/(x)|+C`D. `"log"_(e)(|x^(3)+1|)/(x^(2))+C` |
Answer» Correct Answer - C Key Idea (i) Divide each term of numerator and denominator by `x^(2)`. (ii) Let `x^(2)+(1)/(x) = t` Let integral is `I = int(2x^(3)-1)/(x^(4)+x)dx = int(2x-1//x^(2))/(x^(2)+(1)/(x))dx` [dividing each term of numerator and denominator by `x^(2)`] Put `x^(2)+(1)/(x)=t rArr (2x+(-(1)/(x^(2))))dx = dt` `therefore I = int(dt)/(t)=log_(e)|(t)|+C` `=log_(e)|(x^(2)+(1)/(x))|+C` `=log_(e)|(x^(3)+1)/(x)|+C` |
|