

InterviewSolution
Saved Bookmarks
1. |
The `K_(sp)` of `Mg(OH)_(2)` is `1xx10^(-12). 0.01M Mg^(2+)` will precipitate tate at the limiting pH ofA. `1.3`B. `9`C. `3.5`D. `8` |
Answer» Correct Answer - B `Mg(OH)_(2)(s)hArr Mg^(2+)(aq.)+2OH^(-)(aq.)` `:. K_(sp)= C_(Mg^(2+))C_(OH^(-))^(2)` `10^(-12)=(10^(-2))C_(OH^(-))^(2)` or `C_(OH^(-))^(2)=10^(-10)` `C_(OH^(-))=10^(-5)M` For any aqueous solution at `25^(@)C`, `C_(H^(+))C_(OH^(-))=10^(-14)` Hence, `C_(H^(+))=(10^(-14))/(C_(OH^(-)))=(10^(-14))/(10^(-5))=10^(-9)` Since precipitation occurs when ionic product just exceeds `K_(sp)`, we have the limiting pH of `9(C_(H^(+))=10^(-pH)mol L^(-))`. |
|