InterviewSolution
Saved Bookmarks
| 1. |
The length of normal at any point to the curve, `y=c cosh(x/c)` isA. fixedB. ` ( y^ 2 )/( c^ 2 ) `C. ` (y ^ 2 ) /( c ) `D. ` ( y ) /( c ^ 2 ) ` |
|
Answer» Correct Answer - C Given `, y = c cos h (( x)/ ( c )) ` ` ( d y ) /( dx ) = c * ( 1 )/ (c ) * sin h (( x )/ ( c )) = sin h ( ( x )/( c )) ` Now, length of normal ` = y sqrt ( 1 + (( dy )/( dx ))^ 2 ) ` ` = c cos h ( ( x )/( c )) sqrt ( 1 + sin ^ 2 h (( x )/ (c )) ) ` ` = c cos h (( x )/ (c )) sqrt ( cos h^ 2 ( ( x )/( c )) ) ` ` = c[ cos h (( x )/ ( c))]^ 2 ` ` = c (( y ) / ( c ))^ 2 " " `[from Eq. (i) ] ` = ( y^ 2 )/( c ) ` |
|