1.

The locus a point `P(alpha,beta)` moving under the condition that the line `y=alphax+beta` is a tangent to the hyperbola `x^2/a^2-y^2/b^2=1` isA. a hyperbolaB. a parabolaC. a circleD. an ellipse

Answer» If `y=alpha x+beta` touches the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`. ltbtgt then
`beta^(2)=a^(2)alpha^(2)-b^(2)` [Putting `c=beta` and `m=alpha` in `c^(2)=a^(2)m^(2)-b^(2)`]
Hence, locus of `P(alpha,beta)` is
`y^(2)=a^(2)x^(2)-b^(2)` or , `a^(2)x^(2)-y^(2)=b^(2)` which represents a hyperbola.


Discussion

No Comment Found

Related InterviewSolutions