InterviewSolution
Saved Bookmarks
| 1. |
The locus of the point of intersection of perpendicular tangents to the circles `x^(2)+y^(2)=a^(2)` and `x^(2)+y^(2)=b^(2)` , isA. `x^(2)+y^(2)=a^(2)-b^(2)`B. `x^(2)+y^(2)=a^(2)+b^(2)`C. `x^(2)+y^(2)=(a+b)^(2)`D. none of these |
|
Answer» Correct Answer - B The equation of any tangent to `x^(2)+y^(2)=a^(2)` is `x cos alpha + y sin alpha =a " " ...(i)` The equation of the tangent to `x^(2)+y^(2)=b^(2)`, perpendicular to (i) is `x sin alpha - y sin alpha = b " " ...(ii)` Let (h, k) be the point of intersection of (i) and (ii). Then `h cos alpha + k sin alpha = a " " ...(iii)` and , ` h sin alpha- k cos alpha = b " " ...(iv)` Squaring and adding (iii) and (iv), we get `h^(2)+k^(2)=a^(2)+b^(2)` Hence, the locus of (h, k) is `x^(2)+y^(2)=a^(2)+b^(2)` |
|