 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | The locus of the point of intersection of tangents drawn at the extremities of normal chords to hyperbola `xy=c^2` is (A) `(x^2-y^2 )^2 + 4c^2xy = 0` (B)` (x^2+y^2)^2+ 4c2^xy=0` (C)` x^2-y^2 )^2 + 4cxy = 0` (D) `(x^2 +y^2)^2+4cxy =0` | 
| Answer» Equation of tangent to hyperbola `xy=c^2` is: `x(x1)+y(y1)=2c^2 => (1)`Equation of normal chord at point(h,K) will be: `hx-ky=h^2-k^2 => (2)`On equating (1) and (2), we get `h/(x1)=-k/(y1)=(h^2-k^2)/(2c^2)` On solving,The locus is: `(x^2-y^2)^2+4c^2xy=0` | |