

InterviewSolution
Saved Bookmarks
1. |
The motion of a particle along a straight line is described by the function s=6+4^(2)-t^(4) in SI units. Find the velocity, acceleration, at t=2s, and the average velocity during 3^(rd) seconds. |
Answer» <html><body><p></p>Solution :`s=6+4t^(2)-t^(<a href="https://interviewquestions.tuteehub.com/tag/4-311707" style="font-weight:bold;" target="_blank" title="Click to know more about 4">4</a>)` <br/> Velocity `=(ds)/(dt)=8t-4t^(<a href="https://interviewquestions.tuteehub.com/tag/3-301577" style="font-weight:bold;" target="_blank" title="Click to know more about 3">3</a>)" when "t=2` <br/> Velocity `=8xx2-4xx2^(3)` <br/> Velocity `=-16m//s` <br/> Acceleration `a=(d^(2)s)/(dt^(2))=8-12t^(2)" when "t=2` <br/> acc `=8-12xx2^(2)=-40` <br/> acc `=-40m//s^(2)` <br/> displacement in 2 seconds <br/> `s_(1)=6+4.2^(2)-2^(4)=6m` <br/> displacement in 3 seconds <br/> `s_(2)=6+4.3^(2)-3^(4)=-39m` <br/> displacement during `3^(rd)` <a href="https://interviewquestions.tuteehub.com/tag/second-1197322" style="font-weight:bold;" target="_blank" title="Click to know more about SECOND">SECOND</a> <br/> `=s_(2)-s_(1)=-39-6=-45m` <br/> `therefore` <a href="https://interviewquestions.tuteehub.com/tag/average-13416" style="font-weight:bold;" target="_blank" title="Click to know more about AVERAGE">AVERAGE</a> velocity during `3^(rd)` second <br/> `=(pm45)/(1)=-45m//s` <br/> `-ve` <a href="https://interviewquestions.tuteehub.com/tag/sign-1207134" style="font-weight:bold;" target="_blank" title="Click to know more about SIGN">SIGN</a> indicates that the body is moving in opposite direction to the initial direction of motion.</body></html> | |