1.

The number of integer values of k for which the equation `x^2 +y^2+(k-1)x-ky+5=0` represents a circle whose radius cannot exceed 3 is

Answer» `x^2+y^2+2gx+2fy+c=0`
where centre`=(-g,-f)`
`r=sqrt(f^2+g^2-c)`
`2g=k-1`
`g=(k-1)/2`
`2f=-k`
`f=-k/2`
`c=5`
`r<=3`
`sqrt(f^2+g^2-c) <=3`
`f^2+g^2-c<=9`
`k^2/4+(k-1)^2/4-5<=9`
`(k^2+(k-1)^2-4xx14)/4<=0`
`k^2+(k-1)^2-56<=0`
`k^2+k^2-2k+1-56<=0`
`2k^2-2k-55<=0`
`k=2+-sqrt(4+440)/2xx2`
`k=2+-sqrt2(111)/4`
`k=1+-sqrt2(111)/2`
`(k- (1-sqrt(111)/2)(k-(1+sqrt111/2)`
`sqrt111=10.53`
`(1-sqrt111)/2=-4.7`
`(1+sqrt111)/2=5.7`
option `1`


Discussion

No Comment Found