1.

The number of roots of the equation \(\frac{(x+2)(x-5)}{(x-3)(x+6)} = \frac{x-2}{x+4} \)  isA. 0 B. 1 C. 2 D. 3

Answer»

Given, \(\frac{(x+2)(x-5)}{(x-3)(x+6)} = \frac{x-2}{x+4} \) 

(x+2) (x-5) (x+4) = (x-2) (x-3) (x+6) 

x+ 4x- 5x- 20x + 2x+ 8x - 10x - 40 = x3+6x2-3x2-18x- 2x2 - 12x + 6x + 36 

x2- 22x - 40 = x- 24x + 36 

4x = 76 

x = 19 

hence the given equation has only one solution.



Discussion

No Comment Found