

InterviewSolution
Saved Bookmarks
1. |
The number of roots of the equation \(\frac{(x+2)(x-5)}{(x-3)(x+6)} = \frac{x-2}{x+4} \) isA. 0 B. 1 C. 2 D. 3 |
Answer» Given, \(\frac{(x+2)(x-5)}{(x-3)(x+6)} = \frac{x-2}{x+4} \) (x+2) (x-5) (x+4) = (x-2) (x-3) (x+6) x3 + 4x2 - 5x2 - 20x + 2x2 + 8x - 10x - 40 = x3+6x2-3x2-18x- 2x2 - 12x + 6x + 36 x2- 22x - 40 = x2 - 24x + 36 4x = 76 x = 19 hence the given equation has only one solution. |
|