1.

The number of solution of log4 (x – 1) = log2 (x – 3) is :(a) 0 (b) 5 (c) 2 (d) 3

Answer»

(b) 5

log4 (x – 1) = log2 (x – 3) 

⇒ log22 (x – 1) log2 (x – 3)

⇒ \(\frac{1}{2}\) log(x – 1) log2 (x – 3)       \(\bigg[\)Using logmn (x) = \(\frac{1}{n}\) logmx\(\bigg]\)

⇒ log2 (x – 1) = 2 log2 (x – 3) 

⇒ log2 (x – 1) = log2 (x – 3)2 

⇒ (x – 1) = (x – 3)2  ⇒ (x – 1) = x2 – 6x + 9 

⇒ x2 – 7x + 10 = 0 ⇒ (x – 2) (x – 5) = 0 ⇒ x = 2 or 5. 

x = 2 is inadmissible as log2 (x – 3) is not defined when x = 2.

x = 5.



Discussion

No Comment Found