InterviewSolution
Saved Bookmarks
| 1. |
The points on the ellipse `(x^(2))/(2)+(y^(2))/(10)=1` from which perpendicular tangents can be drawn to the hyperbola `(x^(2))/(5)-(y^(2))/(1) =1` is/areA. `(sqrt((3)/(2)),sqrt((5)/(2)))`B. `(sqrt((3)/(2)),-sqrt((5)/(2)))`C. `(-sqrt((3)/(2)),sqrt((5)/(2)))`D. `(sqrt((5)/(2)),sqrt((3)/(2)))` |
|
Answer» Correct Answer - A::B::C Required points will lie on the intersection of ellipse `(x^(2))/(2)+(y^(2))/(10)=1` with director circle of hyperbola `(x^(2))/(5)-(y^(2))/(1) =1` i.e. on `x^(2) + y^(2) =4` `rArr (sqrt(2)cos theta)^(2) + (sqrt(10)sin theta)^(2) =4` Solving, we get `sin theta = +- (1)/(2), cos theta = +-(sqrt(3))/(2)` `:.` Points are `(+-sqrt((3)/(2)),+-sqrt((5)/(2)))` |
|