1.

The relation between linear velocity and angular velocity of a body moving in a circle is

Answer» <html><body><p></p><a href="https://interviewquestions.tuteehub.com/tag/solution-25781" style="font-weight:bold;" target="_blank" title="Click to know more about SOLUTION">SOLUTION</a> :Consider an object moving along a circle of radius r. In a <a href="https://interviewquestions.tuteehub.com/tag/time-19467" style="font-weight:bold;" target="_blank" title="Click to know more about TIME">TIME</a> `<a href="https://interviewquestions.tuteehub.com/tag/delta-947703" style="font-weight:bold;" target="_blank" title="Click to know more about DELTA">DELTA</a> t`, the object travels an arc distance `Delta s`as shown in the figure .The corresponding angle subtended is `Delta theta` .<br/>In terms of`Delta theta, Delta s`can written as<br/>`Delta s = r Delta theta`<br/>In a time t ,<br/>`(Delta s)/(Delta t) = r""(Delta theta)/(Delta t)`<br/>In the <a href="https://interviewquestions.tuteehub.com/tag/limit-1074025" style="font-weight:bold;" target="_blank" title="Click to know more about LIMIT">LIMIT</a> ` Delta t to 0` , the above equation becomes<br/>`(ds)/(dt) = <a href="https://interviewquestions.tuteehub.com/tag/romega-2997429" style="font-weight:bold;" target="_blank" title="Click to know more about ROMEGA">ROMEGA</a>"" . . . (1)`<br/>Here `(ds)/(dt)`is linear speed (v)that is tangential to the circle and `omega`is angular speed. So equation (1) becomes<br/>` v = r omega`<br/><img src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/PRE_GRG_PHY_XI_V02_C02_E02_204_S01.png" width="80%"/></body></html>


Discussion

No Comment Found