

InterviewSolution
1. |
The roots of √(2x - 3) + √(3x - 5) - √(5x - 6) = 0 areA) 2 or 7/6B) 2 only C) 7/6 only D) 2 and 7/6 |
Answer» Correct option is (B) 2 only Given equation is \(\sqrt{2x-3}+\sqrt{3x-5}-\sqrt{5x-6}=0\) _______________(1) \(\Rightarrow\) \(\sqrt{2x-3}+\sqrt{3x-5}=\sqrt{5x-6}\) \(\Rightarrow2x-3+3x-5\) \(+2\sqrt{(2x-3)(3x-5)}=5x-6\) (By squaring both sides) \(\Rightarrow\) \(2\sqrt{(2x-3)(3x-5)}\) \(=5x-6-5x+8\) \(\Rightarrow\) \(2\sqrt{6x^2-19x+15}=2\) \(\Rightarrow\) \(\sqrt{6x^2-19x+15}=1\) \(\Rightarrow6x^2-19x+15=1\) (By squaring both sides) \(\Rightarrow6x^2-19x+14=0\) \(\Rightarrow6x^2-12x-7x+14=0\) \(\Rightarrow6x(x-2)-7(x-2)=0\) \(\Rightarrow(x-2)(6x-7)=0\) \(\Rightarrow x-2=0\;or\;6x-7=0\) \(\Rightarrow x=2\;or\;x=\frac76\) Let x = \(\frac{7}{6}\), 2x - 3 \(=2\times\frac{7}{6}-3\) \(=\frac{7-9}3=\frac{-2}3<0\) Hence, x = \(\frac{7}{6}\) is not in domain of given equation. \(\therefore\) x = \(\frac{7}{6}\) is not a root of given equation. Put x = 2 in equation (1) \(\sqrt{2\times2-3}+\sqrt{3\times2-5}-\sqrt{5\times2-6}=0\) \(\Rightarrow\) \(\sqrt{4-3}+\sqrt{6-5}-\sqrt{10-6}=0\) \(\Rightarrow\) 1 + 1 - 2 = 0 \(\Rightarrow\) 0 = 0 (Satisfied) Hence, x = 2 is a root of given equation. Correct option is B) 2 only |
|