1.

The roots of `ax^(2) - bx + 2x = 0` are in the ratio of `2 : 3`, then `"____"`.A. `a^(2) = bc`B. `3b^(2) = 25 ac`C. `2b^(2) = 75 c`D. `5b^(2) = ac`

Answer» Correct Answer - B
Let `alpha, beta` be the roots of `ax^(2 - bx + 2c = 0`
Given `= alpha/beta = 2/3`
`rArr = (2beta)/(3)`
Product of the roots
`(2beta)/(3) x beta = (2c)/(a)`
`beta^(2) = (3c)/(a) " "(1)`
Sum of the roots `= alpha + beta`
`rArr (2beta)/(3) + beta = (b)/(a)`
`rArr (5beta)/(3) = b/a`
`beta = (3b)/(5a)`
`beta^(2) = (9b^(2))/(25a^(2))" "(2)`
From Eqs. (1) and (2) `(3c)/(a) = (9b^(2))/(25a^(2)) 3b^(2) = 25 ac`.


Discussion

No Comment Found

Related InterviewSolutions