1.

The roots of each of the following quadratic equations are real and equal, find k. i. 3y2 + ky + 12 = 0 ii. kx (x-2) + 6 = 0

Answer»

i. 3y2 + kg + 12 = 0

Comparing the above equation with ay2 + by + c = 0, we get 

a = 3, b = k, c = 12 

∴ ∆ = b2 – 4ac 

= (k)2 – 4 × 3 × 12 

= k2 – 144 = k2 – (12)2 

∴ ∆ = (k + 12) (k – 12)    …[∵ a – b = (a + b) (a – b)]

Since, the roots are real and equal. 

∴ ∆ = 0 

∴ (k + 12) (k – 12) = 0 

∴ k + 12 = 0 or k – 12 = 0 

∴ k = -12 or k = 12

ii. kx (x – 2) + 6 = 0 

∴ kx2 – 2kx + 6 = 0 

Comparing the above equation with ax2 + bx + c = 0, we get 

a = k, b = -2k, c = 6 

∴ ∆ = b – 4ac 

= (-2k)2 – 4 × k × 6

= 4k2 – 24k 

∴ ∆ = 4k (k – 6) 

Since, the roots are real and equal. 

∴ ∆ = 0 

∴ 4k (k – 6) = 0 

∴ k(k – 6) = 0 

∴ k = 0 or k – 6 = 0 But, if k = 0 then quadratic coefficient becomes zero. 

∴ k ≠ 0

∴ k = 6



Discussion

No Comment Found