InterviewSolution
Saved Bookmarks
| 1. |
The set of allvalues of x satisfying {x}=x[xx] " where " [xx] represents greatest integer function {xx} represents fractional part of x |
|
Answer» 0 `{x}=x(x-{x})=x^(2)-x{x}` `implies {x}=(x^(2))/(1+x)` Now `0 le {x} lt 1` `implies (x^(2))/(1+x) ge 0` `implies 1+x gt 0` `implies x gt -1` `(x^(2))/(1+x) lt 1` `implies x^(2) lt 1 +x` `implies x^(2) -x-1 lt 0` `implies (1-sqrt(5))/(2) lt x lt (1+sqrt(5))/(2)` Given equationagain can be written as `x-[x]=x[x]` `(x)/(1+x)=[x]=LAMBDA` `x=(lambda)/(1-lambda)` `(1-sqrt(5))/(2) lt (lambda)/(1-lambda) lt (1+sqrt(5))/(2)` ` implies (-1-sqrt(5))/(2) lt lambda lt (sqrt(5)-1)/(2)` `lambda=0 implies x=0` `lambda= -1 implies x=(-1)/(2)` |
|