1.

The simple harmonic oscillation of a particle are according to the equation x=5os(2pit+(pi)/4) metre. Find the (i) displacement (ii) velcoity and (iii) acceleration at t=0.

Answer»

SOLUTION :Comparing with the general equation
`x=A COS (omegat +phi_(0))`
Amplitude `A=5m` and `omega=2pi`
(i) Displacement `x=5 cos (2pit+(pi)/4)` metre
when `t=0, x=x_(0)=5"cos"(pi)/4=5xx1/(sqrt(2))=3.54m`
(ii) velocity `v=omega sqrt(A^(2)-x^(2))`
when `t=0, v=v_(0)=omegasqrt(A^(2)-x_(0)^(2))`
`=2pisqrt(5^(2)-(5/(sqrt(2)))^(2))=2pisqrt(25-25/2)`
`=2pisqrt(25/2)=22.2ms^(-1)`
(III) Acceleration `a=-omega^(2)x`
when `t=0=a=a_(0)=-omega^(2)-omega^(2)x_(0)`
`=-(2pi)^(2)3.54=-4pi^(2)(3.54)^(2)`
`:.a_(0)=139.42ms^(-2)`


Discussion

No Comment Found